
Access Free Building Secure Software How To Avoid Security Problems The Right Way

Building Secure Software How To Avoid Security Problems The Right Way
A value-priced boxed gift set of three key books on software security.
Explores how the automotive industry can address the increased risks of cyberattacks and incorporate security into the software development lifecycle While increased connectivity and advanced software-based automotive systems provide tremendous benefits and improved user experiences, they also make the modern vehicle highly
susceptible to cybersecurity attacks. In response, the automotive industry is investing heavily in establishing cybersecurity engineering processes. Written by a seasoned automotive expert with abundant international industry expertise, Building Secure Cars: Assuring the Software Development Lifecycle introduces readers to various types of
cybersecurity activities, measures, and solutions that can be applied at each stage in the typical automotive development process. This book aims to assist auto industry insiders build more secure cars by incorporating key security measures into their software development lifecycle. Readers will learn to better understand common problems
and pitfalls in the development process that lead to security vulnerabilities. To overcome such challenges, this book details how to apply and optimize various automated solutions, which allow software development and test teams to identify and fix vulnerabilities in their products quickly and efficiently. This book balances technical solutions
with automotive technologies, making implementation practical. Building Secure Cars is: One of the first books to explain how the automotive industry can address the increased risks of cyberattacks, and how to incorporate security into the software development lifecycle An optimal resource to help improve software security with relevant
organizational workflows and technical solutions A complete guide that covers introductory information to more advanced and practical topics Written by an established professional working at the heart of the automotive industry Fully illustrated with tables and visuals, plus real-life problems and suggested solutions to enhance the learning
experience This book is written for software development process owners, security policy owners, software developers and engineers, and cybersecurity teams in the automotive industry. All readers will be empowered to improve their organizations' security postures by understanding and applying the practical technologies and solutions
inside.
Use this book to build secure firmware. As operating systems and hypervisors have become successively more hardened, malware has moved further down the stack and into firmware. Firmware represents the boundary between hardware and software, and given its persistence, mutability, and opaqueness to today’s antivirus scanning
technology, it represents an interesting target for attackers. As platforms are universally network-connected and can contain multiple devices with firmware, and a global supply chain feeds into platform firmware, assurance is critical for consumers, IT enterprises, and governments. This importance is highlighted by emergent requirements
such as NIST SP800-193 for firmware resilience and NIST SP800-155 for firmware measurement. This book covers the secure implementation of various aspects of firmware, including standards-based firmware—such as support of the Trusted Computing Group (TCG), Desktop Management Task Force (DMTF), and Unified Extensible Firmware
Interface (UEFI) specifications—and also provides code samples and use cases. Beyond the standards, alternate firmware implementations such as ARM Trusted Firmware and other device firmware implementations (such as platform roots of trust), are covered. What You Will learn Get an overview of proactive security development for
firmware, including firmware threat modeling Understand the details of architecture, including protection, detection, recovery, integrity measurement, and access control Be familiar with best practices for secure firmware development, including trusted execution environments, cryptography, and language-based defenses Know the techniques
used for security validation and maintenance Who This Book Is For Given the complexity of modern platform boot requirements and the threat landscape, this book is relevant for readers spanning from IT decision makers to developers building firmware
Leads readers through the tasks and activities that successful computer programmers navigate on a daily basis.
The Software Security Library
Building a Secure Computer System
The Security Development Lifecycle
Software Security: Building Secure Software Applications
Security Patterns in Practice
Exploiting Software: How To Break Code
As a developer, you need to build software in a secure way. But you can't spend all your time focusing on security. The answer is to use good design principles, tools, and mindsets that make security an implicit result - it's secure by design. Secure by Design teaches developers how to use design to drive security in software development. This book is full of patterns, best practices, and mindsets that you can
directly apply to your real world development. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Password sniffing, spoofing, buffer overflows, and denial of service: these are only a few of the attacks on today's computer systems and networks. At the root of this epidemic is poorly written, poorly tested, and insecure code that puts everyone at risk. Clearly, today's developers need help figuring out how to write code that attackers won't be able to exploit. But writing such code is surprisingly difficult.
Secure Programming Cookbook for C and C++ is an important new resource for developers serious about writing secure code. It contains a wealth of solutions to problems faced by those who care about the security of their applications. It covers a wide range of topics, including safe initialization, access control, input validation, symmetric and public key cryptography, cryptographic hashes and MACs,
authentication and key exchange, PKI, random numbers, and anti-tampering. The rich set of code samples provided in the book's more than 200 recipes will help programmers secure the C and C++ programs they write for both Unix® (including Linux®) and Windows® environments. Readers will learn: How to avoid common programming errors, such as buffer overflows, race conditions, and format
string problems How to properly SSL-enable applications How to create secure channels for client-server communication without SSL How to integrate Public Key Infrastructure (PKI) into applications Best practices for using cryptography properly Techniques and strategies for properly validating input to programs How to launch programs securely How to use file access mechanisms properly
Techniques for protecting applications from reverse engineering The book's web site supplements the book by providing a place to post new recipes, including those written in additional languages like Perl, Java, and Python. Monthly prizes will reward the best recipes submitted by readers. Secure Programming Cookbook for C and C++ is destined to become an essential part of any developer's library, a
code companion developers will turn to again and again as they seek to protect their systems from attackers and reduce the risks they face in today's dangerous world.
Little prior knowledge is needed to use this long-needed reference. Computer professionals and software engineers will learn how to design secure operating systems, networks and applications.
Most organizations have a firewall, antivirus software, and intrusion detection systems, all of which are intended to keep attackers out. So why is computer security a bigger problem today than ever before? The answer is simple--bad software lies at the heart of all computer security problems. Traditional solutions simply treat the symptoms, not the problem, and usually do so in a reactive way. This book
teaches you how to take a proactive approach to computer security. Building Secure Software cuts to the heart of computer security to help you get security right the first time. If you are serious about computer security, you need to read this book, which includes essential lessons for both security professionals who have come to realize that software is the problem, and software developers who intend to
make their code behave. Written for anyone involved in software development and use—from managers to coders—this book is your first step toward building more secure software. Building Secure Software provides expert perspectives and techniques to help you ensure the security of essential software. If you consider threats and vulnerabilities early in the devel-opment cycle you can build security into
your system. With this book you will learn how to determine an acceptable level of risk, develop security tests, and plug security holes before software is even shipped. Inside you'll find the ten guiding principles for software security, as well as detailed coverage of: Software risk management for security Selecting technologies to make your code more secure Security implications of open source and
proprietary software How to audit software The dreaded buffer overflow Access control and password authentication Random number generation Applying cryptography Trust management and input Client-side security Dealing with firewalls Only by building secure software can you defend yourself against security breaches and gain the confidence that comes with knowing you won't have to play the
"penetrate and patch" game anymore. Get it right the first time. Let these expert authors show you how to properly design your system; save time, money, and credibility; and preserve your customers' trust.
Secure Programming with Static Analysis
Building Secure and Reliable Systems
A Guide for Project Managers
Assuring the Automotive Software Development Lifecycle
Recipes for Cryptography, Authentication, Input Validation & More
Building Security Systems
"The security of information systems has not improved at a rate consistent with the growth and sophistication of the attacks being made against them. To address this problem, we must improve the underlying strategies and techniques used to create our systems. Specifically, we must build
security in from the start, rather than append it as an afterthought. That's the point of Secure Coding in C and C++. In careful detail, this book shows software developers how to build high-quality systems that are less vulnerable to costly and even catastrophic attack. It's a book that every
developer should read before the start of any serious project." --Frank Abagnale, author, lecturer, and leading consultant on fraud prevention and secure documents Learn the Root Causes of Software Vulnerabilities and How to Avoid Them Commonly exploited software vulnerabilities are
usually caused by avoidable software defects. Having analyzed nearly 18,000 vulnerability reports over the past ten years, the CERT/Coordination Center (CERT/CC) has determined that a relatively small number of root causes account for most of them. This book identifies and explains
these causes and shows the steps that can be taken to prevent exploitation. Moreover, this book encourages programmers to adopt security best practices and develop a security mindset that can help protect software from tomorrow's attacks, not just today's. Drawing on the CERT/CC's
reports and conclusions, Robert Seacord systematically identifies the program errors most likely to lead to security breaches, shows how they can be exploited, reviews the potential consequences, and presents secure alternatives. Coverage includes technical detail on how to Improve the
overall security of any C/C++ application Thwart buffer overflows and stack-smashing attacks that exploit insecure string manipulation logic Avoid vulnerabilities and security flaws resulting from the incorrect use of dynamic memory management functions Eliminate integer-related
problems: integer overflows, sign errors, and truncation errors Correctly use formatted output functions without introducing format-string vulnerabilities Avoid I/O vulnerabilities, including race conditions Secure Coding in C and C++ presents hundreds of examples of secure code,
insecure code, and exploits, implemented for Windows and Linux. If you're responsible for creating secure C or C++ software--or for keeping it safe--no other book offers you this much detailed, expert assistance.
Software Security: Building secure software applications discusses in detail the importance of security in software, and the vulnerability associated with the use of software. Considering the latest developments in technology, the book presents a detailed overview of guidelines and
techniques to build secure software applications. It further explains the known security concerns, and how the same can be overcome. Towards the end, a chapter is dedicated to the techniques related to software testing and auditing.
The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and
articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices
that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices
Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore
Google's best practices for training, communication, and meetings that your organization can use
Now that there’s software in everything, how can you make anything secure? Understand how to engineer dependable systems with this newly updated classic In Security Engineering: A Guide to Building Dependable Distributed Systems, Third Edition Cambridge University professor Ross
Anderson updates his classic textbook and teaches readers how to design, implement, and test systems to withstand both error and attack. This book became a best-seller in 2001 and helped establish the discipline of security engineering. By the second edition in 2008, underground dark
markets had let the bad guys specialize and scale up; attacks were increasingly on users rather than on technology. The book repeated its success by showing how security engineers can focus on usability. Now the third edition brings it up to date for 2020. As people now go online from
phones more than laptops, most servers are in the cloud, online advertising drives the Internet and social networks have taken over much human interaction, many patterns of crime and abuse are the same, but the methods have evolved. Ross Anderson explores what security engineering
means in 2020, including: How the basic elements of cryptography, protocols, and access control translate to the new world of phones, cloud services, social media and the Internet of Things Who the attackers are – from nation states and business competitors through criminal gangs to
stalkers and playground bullies What they do – from phishing and carding through SIM swapping and software exploits to DDoS and fake news Security psychology, from privacy through ease-of-use to deception The economics of security and dependability – why companies build vulnerable
systems and governments look the other way How dozens of industries went online – well or badly How to manage security and safety engineering in a world of agile development – from reliability engineering to DevSecOps The third edition of Security Engineering ends with a grand
challenge: sustainable security. As we build ever more software and connectivity into safety-critical durable goods like cars and medical devices, how do we design systems we can maintain and defend for decades? Or will everything in the world need monthly software upgrades, and become
unsafe once they stop?
A Practical Approach for Systems and Software Assurance
Secure, Resilient, and Agile Software Development
Designing Secure Architectures Using Software Patterns
Building Secure Systems in Untrusted Networks
Threat Modeling
Iron-Clad Java
Most security books are targeted at security engineers and specialists. Few show how build security into software. None breakdown the different concerns facing security at different levels of the system: the enterprise, architectural and operational layers. Security Patterns addresses the full spectrum of security in
systems design, using best practice solutions to show how to integrate security in the broader engineering process. Essential for designers building large-scale systems who want best practice solutions to typical security problems Real world case studies illustrate how to use the patterns in specific domains For more
information visit www.securitypatterns.org
Describes how to put software security into practice, covering such topics as risk management frameworks, architectural risk analysis, security testing, and penetration testing.
Although many software books highlight open problems in secure software development, few provide easily actionable, ground-level solutions. Breaking the mold, Secure and Resilient Software Development teaches you how to apply best practices and standards for consistent and secure software development. It details
specific quality software developmen
The First Expert Guide to Static Analysis for Software Security! Creating secure code requires more than just good intentions. Programmers need to know that their code will be safe in an almost infinite number of scenarios and configurations. Static source code analysis gives users the ability to review their work with a
fine-toothed comb and uncover the kinds of errors that lead directly to security vulnerabilities. Now, there’s a complete guide to static analysis: how it works, how to integrate it into the software development processes, and how to make the most of it during security code review. Static analysis experts Brian Chess and
Jacob West look at the most common types of security defects that occur today. They illustrate main points using Java and C code examples taken from real-world security incidents, showing how coding errors are exploited, how they could have been prevented, and how static analysis can rapidly uncover similar
mistakes. This book is for everyone concerned with building more secure software: developers, security engineers, analysts, and testers.
Building Security in
A Guide to Building Dependable Distributed Systems
Secure Coding in C and C++
Building Secure Firmware
Fuzzing for Software Security Testing and Quality Assurance
The 7 Qualities of Highly Secure Software
The only security book to be chosen as a Dr. Dobbs Jolt Award Finalist since Bruce Schneier's Secrets and Lies and Applied Cryptography! Adam Shostack is responsible for security development lifecycle threat modeling at Microsoft and is one of a handful of threat modeling
experts in the world. Now, he is sharing his considerable expertise into this unique book. With pages of specific actionable advice, he details how to build better security into the design of systems, software, or services from the outset. You'll explore various threat
modeling approaches, find out how to test your designs against threats, and learn effective ways to address threats that have been validated at Microsoft and other top companies. Systems security managers, you'll find tools and a framework for structured thinking about
what can go wrong. Software developers, you'll appreciate the jargon-free and accessible introduction to this essential skill. Security professionals, you'll learn to discern changing threats and discover the easiest ways to adopt a structured approach to threat modeling.
Provides a unique how-to for security and software developers who need to design secure products and systems and test their designs Explains how to threat model and explores various threat modeling approaches, such as asset-centric, attacker-centric and software-centric
Provides effective approaches and techniques that have been proven at Microsoft and elsewhere Offers actionable how-to advice not tied to any specific software, operating system, or programming language Authored by a Microsoft professional who is one of the most prominent
threat modeling experts in the world As more software is delivered on the Internet or operates on Internet-connected devices, the design of secure software is absolutely critical. Make sure you're ready with Threat Modeling: Designing for Security.
Covers topics such as the importance of secure systems, threat modeling, canonical representation issues, solving database input, denial-of-service attacks, and security code reviews and checklists.
Cyber Security Engineering is the definitive modern reference and tutorial on the full range of capabilities associated with modern cyber security engineering. Pioneering software assurance experts Dr. Nancy R. Mead and Dr. Carol C. Woody bring together comprehensive best
practices for building software systems that exhibit superior operational security, and for considering security throughout your full system development and acquisition lifecycles. Drawing on their pioneering work at the Software Engineering Institute (SEI) and Carnegie
Mellon University, Mead and Woody introduce seven core principles of software assurance, and show how to apply them coherently and systematically. Using these principles, they help you prioritize the wide range of possible security actions available to you, and justify
the required investments. Cyber Security Engineering guides you through risk analysis, planning to manage secure software development, building organizational models, identifying required and missing competencies, and defining and structuring metrics. Mead and Woody
address important topics, including the use of standards, engineering security requirements for acquiring COTS software, applying DevOps, analyzing malware to anticipate future vulnerabilities, and planning ongoing improvements. This book will be valuable to wide
audiences of practitioners and managers with responsibility for systems, software, or quality engineering, reliability, security, acquisition, or operations. Whatever your role, it can help you reduce operational problems, eliminate excessive patching, and deliver
software that is more resilient and secure.
"Organizations worldwide rely on Java code to perform mission-critical tasks, and therefore that code must be reliable, robust, fast, maintainable, and secure. JavaTM Coding Guidelines brings together expert guidelines, recommendations, and code examples to help you meet
these demands."--Publisher description.
Intro to Secure Software
Building Secure Software: How to Avoid Security Problems the Right Way
Cyber Security Engineering
Security Patterns
Designing for Security
Best Practices for Designing, Implementing, and Maintaining Systems
Describes how to put software security into practice, covering such topics as risk analysis, coding policies, Agile Methods, cryptographic standards, and threat tree patterns.
Can a system be considered truly reliable if it isn't fundamentally secure? Or can it be considered secure if it's unreliable? Security is crucial to the design and operation of scalable systems in production, as it plays an important part in product quality, performance, and availability. In this book, experts from Google share best practices to help your organization design scalable and reliable systems that are fundamentally secure.
Two previous O’Reilly books from Google—Site Reliability Engineering and The Site Reliability Workbook—demonstrated how and why a commitment to the entire service lifecycle enables organizations to successfully build, deploy, monitor, and maintain software systems. In this latest guide, the authors offer insights into system design, implementation, and maintenance from practitioners who specialize in security and reliability.
They also discuss how building and adopting their recommended best practices requires a culture that’s supportive of such change. You’ll learn about secure and reliable systems through: Design strategies Recommendations for coding, testing, and debugging practices Strategies to prepare for, respond to, and recover from incidents Cultural best practices that help teams across your organization collaborate effectively
The 7 Qualities of Highly Secure Software provides a framework for designing, developing, and deploying hacker-resilient software. It uses engaging anecdotes and analogies—ranging from Aesop’s fables, athletics, architecture, biology, nursery rhymes, and video games—to illustrate the qualities that are essential for the development of highly secure software. Each chapter details one of the seven qualities that can make your
software highly secure and less susceptible to hacker threats. Leveraging real-world experiences and examples, the book: Explains complex security concepts in language that is easy to understand for professionals involved in management, software development, and operations Specifies the qualities and skills that are essential for building secure software Highlights the parallels between the habits of effective people and
qualities in terms of software security Praise for the Book: This will be required reading for my executives, security team, software architects and lead developers. —David W. Stender, CISSP, CSSLP, CAP, CISO of the US Internal Revenue Service Developing highly secure software should be at the forefront of organizational strategy and this book provides a framework to do so. —Troy Leach, CTO, PCI Security Standards
Council This book will teach you the core, critical skills needed to raise the security bar on the attackers and swing the game in your favor. —Michael Howard, Principal Cyber Security Program Manager, Microsoft As a penetration tester, my job will be a lot harder as people read this book! —Kevin Johnson, Security Consultant, Secure Ideas
A collection of best practices and effective implementation recommendations that are proven to work, Secure, Resilient, and Agile Software Development leaves the boring details of software security theory out of the discussion as much as possible to concentrate on practical applied software security for practical people. Written to aid your career as well as your organization, the book shows how to gain skills in secure and
resilient software development and related tasks. The book explains how to integrate these development skills into your daily duties, thereby increasing your professional value to your company, your management, your community, and your industry. Secure, Resilient, and Agile Software Development was written for the following professionals: AppSec architects and program managers in information security organizations
Enterprise architecture teams with application development focus Scrum teams DevOps teams Product owners and their managers Project managers Application security auditors With a detailed look at Agile and Scrum software development methodologies, this book explains how security controls need to change in light of an entirely new paradigm on how software is developed. It focuses on ways to educate everyone who has a
hand in any software development project with appropriate and practical skills to Build Security In. After covering foundational and fundamental principles for secure application design, this book dives into concepts, techniques, and design goals to meet well-understood acceptance criteria on features an application must implement. It also explains how the design sprint is adapted for proper consideration of security as well as
defensive programming techniques. The book concludes with a look at white box application analysis and sprint-based activities to improve the security and quality of software under development.
How to Avoid Security Problems the Right Way
Secure by Design
Software Security
New Measurements for Building Secure Software
75 Recommendations for Reliable and Secure Programs
Engineering Secure Software and Systems
Learn the code cracker's malicious mindset, so you can find worn-size holes in the software you are designing, testing, and building. Fuzzing for Software Security Testing and Quality Assurance takes a weapon from the black-hat arsenal to give you a powerful new tool to build secure, high-quality software. This practical resource helps you add extra protection without adding
expense or time to already tight schedules and budgets. The book shows you how to make fuzzing a standard practice that integrates seamlessly with all development activities. This comprehensive reference goes through each phase of software development and points out where testing and auditing can tighten security. It surveys all popular commercial fuzzing tools and
explains how to select the right one for a software development project. The book also identifies those cases where commercial tools fall short and when there is a need for building your own fuzzing tools.
What every software professional should know about security. Designing Secure Software consolidates Loren Kohnfelder’s more than twenty years of experience into a concise, elegant guide to improving the security of technology products. Written for a wide range of software professionals, it emphasizes building security into software design early and involving the entire team
in the process. The book begins with a discussion of core concepts like trust, threats, mitigation, secure design patterns, and cryptography. The second part, perhaps this book’s most unique and important contribution to the field, covers the process of designing and reviewing a software design with security considerations in mind. The final section details the most common
coding flaws that create vulnerabilities, making copious use of code snippets written in C and Python to illustrate implementation vulnerabilities. You’ll learn how to: • Identify important assets, the attack surface, and the trust boundaries in a system • Evaluate the effectiveness of various threat mitigation candidates • Work with well-known secure coding patterns and libraries
• Understand and prevent vulnerabilities like XSS and CSRF, memory flaws, and more • Use security testing to proactively identify vulnerabilities introduced into code • Review a software design for security flaws effectively and without judgment Kohnfelder’s career, spanning decades at Microsoft and Google, introduced numerous software security initiatives, including the co-
creation of the STRIDE threat modeling framework used widely today. This book is a modern, pragmatic consolidation of his best practices, insights, and ideas about the future of software.
Proven Methods for Building Secure Java-Based Web Applications Develop, deploy, and maintain secure Java applications using the expert techniques and open source libraries described in this Oracle Press guide. Iron-Clad Java presents the processes required to build robust and secure applications from the start and explains how to eliminate existing security bugs. Best
practices for authentication, access control, data protection, attack prevention, error handling, and much more are included. Using the practical advice and real-world examples provided in this authoritative resource, you'll gain valuable secure software engineering skills. Establish secure authentication and session management processes Implement a robust access control
design for multi-tenant web applications Defend against cross-site scripting, cross-site request forgery, and clickjacking Protect sensitive data while it is stored or in transit Prevent SQL injection and other injection attacks Ensure safe file I/O and upload Use effective logging, error handling, and intrusion detection methods Follow a comprehensive secure software development
lifecycle "In this book, Jim Manico and August Detlefsen tackle security education from a technical perspective and bring their wealth of industry knowledge and experience to application designers. A significant amount of thought was given to include the most useful and relevant security content for designers to defend their applications. This is not a book about security
theories, it’s the hard lessons learned from those who have been exploited, turned into actionable items for application designers, and condensed into print."—From the Foreword by Milton Smith, Oracle Senior Principal Security Product Manager, Java
The perimeter defenses guarding your network perhaps are not as secure as you think. Hosts behind the firewall have no defenses of their own, so when a host in the "trusted" zone is breached, access to your data center is not far behind. That’s an all-too-familiar scenario today. With this practical book, you’ll learn the principles behind zero trust architecture, along with details
necessary to implement it. The Zero Trust Model treats all hosts as if they’re internet-facing, and considers the entire network to be compromised and hostile. By taking this approach, you’ll focus on building strong authentication, authorization, and encryption throughout, while providing compartmentalized access and better operational agility. Understand how perimeter-based
defenses have evolved to become the broken model we use today Explore two case studies of zero trust in production networks on the client side (Google) and on the server side (PagerDuty) Get example configuration for open source tools that you can use to build a zero trust network Learn how to migrate from a perimeter-based network to a zero trust network in production
SDL, a Process for Developing Demonstrably More Secure Software
Building Secure Web Applications
Site Reliability Engineering
Java Coding Guidelines
Software Security Engineering
Secure Software Development
"Building Secure Software cuts to the heart of computer security to help you get security right the first time. If you are serious about computer security, you need to read this book, which includes essential lessons for both security professionals who have come to realize that software is the problem, and software developers who intend to make their code behave. Written for anyone involved in software development and
use--from managers to coders--this book is your first step toward building more secure software. Building Secure Software provides expert perspectives and techniques to help you ensure the security of essential software. If you consider threats and vulnerabilities early in the development cycle you can build security into your system. With this book you will learn how to determine an acceptable level of risk, develop security
tests, and plug security holes before software is even shipped"--Resource description page.
Software Security Engineering draws extensively on the systematic approach developed for the Build Security In (BSI) Web site. Sponsored by the Department of Homeland Security Software Assurance Program, the BSI site offers a host of tools, guidelines, rules, principles, and other resources to help project managers address security issues in every phase of the software development life cycle (SDLC). The book’s expert
authors, themselves frequent contributors to the BSI site, represent two well-known resources in the security world: the CERT Program at the Software Engineering Institute (SEI) and Cigital, Inc., a consulting firm specializing in software security. This book will help you understand why Software security is about more than just eliminating vulnerabilities and conducting penetration tests Network security mechanisms and IT
infrastructure security services do not sufficiently protect application software from security risks Software security initiatives should follow a risk-management approach to identify priorities and to define what is “good enough”–understanding that software security risks will change throughout the SDLC Project managers and software engineers need to learn to think like an attacker in order to address the range of
functions that software should not do, and how software can better resist, tolerate, and recover when under attack
It is our pleasure to welcome you to the proceedings of the Second International Symposium on Engineering Secure Software and Systems. This unique event aimed at bringing together researchersfrom softwareen- neering and security engineering, which might help to unite and further develop the two communities in this and future editions. The parallel technical spons- ships from the ACM SIGSAC (the ACM interest
group in security) and ACM SIGSOF (the ACM interest group in software engineering) is a clear sign of the importance of this inter-disciplinary research area and its potential. The di?culty of building secure software systems is no longer focused on mastering security technology such as cryptography or access control models. Other important factors include the complexity of modern networked software systems, the
unpredictability of practical development life cycles, the intertw- ing of and trade-o? between functionality, security and other qualities, the d- culty of dealing with human factors, and so forth. Over the last years, an entire research domain has been building up around these problems. The conference program included two major keynotes from Any Gordon (Microsoft Research Cambridge) on the practical veri?cation of
security pro- cols implementation and Angela Sasse (University College London) on security usability and an interesting blend of research, industry and idea papers.
This is the eBook version of the printed book. If the print book includes a CD-ROM, this content is not included within the eBook version. Most organizations have a firewall, antivirus software, and intrusion detection systems, all of which are intended to keep attackers out. So why is computer security a bigger problem today than ever before? The answer is simple--bad software lies at the heart of all computer security
problems. Traditional solutions simply treat the symptoms, not the problem, and usually do so in a reactive way. This book teaches you how to take a proactive approach to compu.
Building Secure Software
Security Engineering
Secure and Resilient Software Development
How Google Runs Production Systems
Zero Trust Networks
Armoring the Foundation of the Platform
Learn to combine security theory and code to produce secure systems Security is clearly a crucial issue to consider during the design and implementation of any distributed software architecture. Security patterns are increasingly being used by developers who take security
into serious consideration from the creation of their work. Written by the authority on security patterns, this unique book examines the structure and purpose of security patterns, illustrating their use with the help of detailed implementation advice, numerous code
samples, and descriptions in UML. Provides an extensive, up-to-date catalog of security patterns Shares real-world case studies so you can see when and how to use security patterns in practice Details how to incorporate security from the conceptual stage Highlights tips on
authentication, authorization, role-based access control, firewalls, wireless networks, middleware, VoIP, web services security, and more Author is well known and highly respected in the field of security and an expert on security patterns Security Patterns in Practice
shows you how to confidently develop a secure system step by step.
A Guide for Developers
Secure Programming Cookbook for C and C++
Designing Secure Software
A Security Programmer's Guide
Integrating Security and Systems Engineering
Writing Secure Code

Copyright : africanamericanstudies.coas.howard.edu

Page 1/1

http://africanamericanstudies.coas.howard.edu

