Donald Neaman 3rd Edition Semiconductor Physics

This book covers the physics of semiconductors on an introductory level, assuming that the reader already has some knowledge of condensed matter physics. Crystal structure, band structure, carrier transport, phonons, scattering processes and optical properties are presented for typical semiconductors such as silicon, but III–V and II–VI compounds are also included. In view of the increasing importance of wide-gap semiconductors, the electronic and optical properties of these materials are dealt with too.

This junior level electronics text provides a foundation for analyzing and designing analog and digital electronics throughout the book. Extensive pedagogical features including numerous design examples, problem solving technique sections, Test Your Understanding questions, and chapter checkpoints lend to this classic text. The author, Don Neamen, has many years experience as an Engineering Educator. His experience shines through each chapter of the book, rich with realistic examples and practical rules of thumb. The Third Edition continues to offer the same hallmark features that made the previous editions such a success. Extensive Pedagogy: A short introduction at the beginning of each chapter links the new chapter to the material presented in previous chapters. The objectives of the chapter are then presented in the Preview section and then are listed in bullet form for easy reference. Test Your Understanding Exercise Problems with provided answers have all been updated. Design Applications are included at the end of chapters. A specific electronic design related to that chapter is presented. The various stages in the design of an electronic thermometer are explained throughout the text. Specific Design Problems and Examples are highlighted throughout as well.

Technological advancement in chip development, primarily based on the downscaling of the feature size of transistors, is threatening to come to a standstill as we approach the limits of conventional scaling. For example, when the number of electrons in a device's active region is reduced to less than ten electrons (or holes), quantum fluctuation errors will occur, and when gate insulator thickness becomes too insignificant to block quantum mechanical tunneling, unacceptable leakage will occur. Fortunately, there is truth in the old adage that whenever a door closes, a window opens somewhere else. In this case, that window opening is nanotechnology. Silicon Nanoelectronics takes a look at at the recent development of novel devices and materials that hold great promise for the creation of still smaller and more powerful chips. Silicon nanodevices are positoned to be particularly relevant in consideration of the existing silicon process infrastructure already in place throughout the semiconductor industry and silicon's consequent compatibility with current CMOS circuits. This is reinforced by the nearly perfect interface that can exist between natural oxide and silicon. Presenting the contributions of more than 20 leading academic and corporate researchers from the United States and Japan, Silicon Nanoelectronics offers a comprehensive look at this emergent technology. The text includes extensive background information on the physics of silicon nanodevices and practical CMOS scaling. It considers such issues as quantum effects and ballistic transport and resonant tunneling in silicon nanotechnology. A significant amount of attention is given to the all-important silicon single electron transistors and the devices that utilize them. In offering an update of the current state-of-the-art in the field of silicon nanoelectronics, this volume serves well as a concise reference for students, scientists, engineers, and specialists in various fields, including electron device technology, solid-state physics, and nanotechno

Offers a basic, up-to-date introduction to semiconductor fabrication technology, including both the theoretical and practical aspects of all major steps in the fabrication sequence Presents comprehensive coverage of process sequences Introduces readers to modern simulation tools Addresses the practical aspects of integrated circuit fabrication Clearly explains basic processing theory An Introduction to Semiconductor Devices

Physics of Semiconductor Devices

Electronic Circuit Analysis and Design

A Friendly Introduction for Electrical and Computer Engineers

Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world.

The purpose of this workshop is to spread the vast amount of information available on semiconductor physics to every possible field throughout the scientific community. As a result, the latest findings, research and discoveries can be quickly disseminated. This workshop provides all participating research groups with an excellent platform for interaction and collaboration with other members of their respective scientific community. This workshop's technical sessions include various current and significant topics for applications and scientific developments, including • Optoelectronics • VLSI & ULSI Technology • Photovoltaics • MEMS & Sensors • Device Modeling and Simulation • High Frequency/ Power Devices • Nanotechnology and Emerging Areas • Organic Electronics • Displays and Lighting Many eminent scientists from various national and international organizations are actively participating with their latest research works and also equally supporting this mega event by joining the various organizing committees.

Market_Desc: • Design Engineers • Research Scientists • Industrial and Electronics Engineering Managers • Graduate Students Special Features: • Completely updated with 30-50% revisions • Will include worked examples and end-of-the-chapter problems (with a solutions manual) • First edition was the most cited work in contemporary engineering and applied science publications (over 12000)

citations since 1969) About The Book: This classic reference provides detailed information on the underlying physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. It integrates nearly 1,000 references to important original research papers and review articles, and includes more than 650 high-quality technical illustrations and 25 tables of material parameters for device analysis.

Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them."

Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters. Principles of Electrical Engineering Materials and Devices

Introduction to Semiconductor Physics Semiconductor Optoelectronic Devices PHYSICS OF SEMICONDUCTOR DEVICES. 3RD ED

The Physics of Semiconductors

Optoelectronics has become an important part of our lives. Wherever light is used to transmit information, tiny semiconductor devices are needed to transfer electrical current into optical signals and vice versa. Examples include light emitting diodes in radios and other appliances, photodetectors in elevator doors and digital cameras, and laser diodes that transmit phone calls through glass fibers. Such optoelectronic devices take advantage of sophisticated interactions between electrons and light. Nanometer scale semiconductor structures are often at the heart of modern optoelectronic devices. Their shrinking size and increasing complexity make computer simulation an important tool to design better devices that meet ever rising perfomance requirements. The current need to apply advanced design software in optoelectronics follows the trend observed in the 1980's with simulation software for silicon devices. Today, software for technology computer-aided design (TCAD) and electronic design automation (EDA) represents a fundamental part of the silicon industry. In optoelectronics, advanced commercial device software has emerged recently and it is expected to play an increasingly important role in the near future. This book will enable students, device engineers, and researchers to more effectively use advanced design software in optoelectronics. Provides fundamental knowledge in semiconductor physics and in electromagnetics, while helping to understand and use advanced device simulation software Demonstrates the combination of measurements and simulations in order to obtain realistic results and provides data on all required material parameters Gives deep insight into the physics of state-of-the-art devices and helps to design and analyze of modern optoelectronic devices

Market_Desc: · Electrical Engineers Special Features: · Over 150 solved examples that clarify concepts are integrated throughout the text. · End-of-chapter summary tables and hundreds of figures are included to reinforce the intricacies of modern semiconductor devices · Coverage of device optimization issues shows the reader how in each device one has to trade one performance against another About The Book: This introductory text presents a well-balanced coverage of semiconductor physics and device operation and shows how devices are optimized for applications. The text begins with an exploration of the basic physical processes upon which all semiconductor devices are based. Next, the author focuses on the operation of the important semiconductor devices along with issues relating to the optimization of device performance.

The #1 book in the industry for more than 15 years! Utilizing a straightforward, math-free pathology, this is a novice-friendly guide to the semiconductor fabrication process from raw materials through shipping the finished, packaged device. Challenging quizzes and review summaries make this the perfect learning guide for technicians in training. * NEW chapter on nanotechnology * NEW sections on 300mm wafer processing * Processes and devices, and Green processing * Every chapter updated to reflect the latest processing techniques ISTC/CSTIC is an annual semiconductor technology conference covering all the aspects of semiconductor technology and manufacturing, including devices, design, lithography, integration,

ISTC/CSTIC is an annual semiconductor technology conference covering all the aspects of semiconductor technology and manufacturing, including devices, design, lithography, integration, materials, processes, manufacturing as well as emerging semiconductor technologies and silicon material applications. ISTC/CSTIC 2009 was merged by ISTC (International Semiconductor Technology Conference) and CSTIC (China Semiconductor Technology International Conference), the two industry leading technical conferences in China, and consisted of one plenary session and nine technical symposia. This issue of ECS Transactions contains 159 papers from the conference.

Probability and Stochastic Processes

INTRODUCTION TO SEMICONDUCTOR MATERIALS AND DEVICES

Optical Electronics in Modern Communications

17th International Workshop on the Physics of Semiconductor Devices 2013

Semiconductor Device Physics and Design

Books are seldom finished. At best, they are abandoned. The second edition of "Electronic Properties of Materials" has been in use now for about seven years. During this time my publisher gave me ample opportunities to update and improve the text whenever the Ibook was reprinted. There were about six of these reprinting cycles. Eventually, however, it became clear that substantially more new material had to be added to account for the stormy developments which occurred in the field of electrical, optical, and magnetic materials. In particular, expanded sections on flat-panel displays (liquid crystals, electroluminescence devices, field emission displays, and plasma dis.: plays) were added. Further, the recent developments in blue- and green emitting LED's and in photonics are included. Magnetic storage devices also underwent rapid development. Thus, magneto-optical memories, magneto resistance devices, and new' magnetic materials needed to be covered. The sections on dielectric properties, ferroelectricity, piezoelectricity, electrostric tion, and thermoelectric properties have been expanded. Of course, the entire text was critically reviewed, updated, and improved. However, the most extensive change I undertook was the conversion of all equations to SI units throughout. In most of the world and in virtually all of the interna tional scientific journals use of this system of units is required. If today's students do not learn to utilize it, another generation is "lost" on this matter. In other words, it is important that students become comfortable with SI units.

Graduate text with comprehensive treatment of semiconductor device physics and engineering, and descriptions of real optoelectronic devices.

This text introduces engineering students to probability theory and stochastic processes. Along with thorough mathematical development of the subject, the book presents intuitive explanations of key points in order to give students the insights they need to apply math to practical engineering problems. The first seven chapters contain the core material that is essential to any introductory course. In one-semester undergraduate courses, instructors can select material from the remaining chapters to meet their individual goals. Graduate courses can cover all chapters in one semester.

Principles of Electrical Engineering Materials and Devices has been developed to bridge the gap between traditional electronic circuits texts and semiconductor texts

Solid State Electronic Devices

Semiconductor Physics And Devices

Microelectronics

The Art of Electronics: The x Chapters Introduction to Physics and Simulation

Semiconductor Gas Sensors, Second Edition, summarizes recent research on basic principles, new materials and emerging technologies in this essential field. Chapters cover the foundation of the underlying principles and sensing mechanisms of gas sensors, include expanded content on gas sensing characteristics, such as response, sensitivity and cross-sensitivity, present an overview of the nanomaterials utilized for gas sensing, and review the latest applications for semiconductor gas sensors, including environmental monitoring, indoor monitoring, medical applications, CMOS integration and chemical warfare agents. This second edition has been completely updated, thus ensuring it reflects current literature and the latest materials systems and applications. Includes an overview of key applications, with new chapters on indoor monitoring and medical applications Reviews developments in gas sensors and sensing methods, including an expanded section on gas sensor theory Discusses the use of nanomaterials in gas sensing, with new chapters on single-layer graphene sensors, graphene oxide sensors, printed sensors, and much more

Special Features *Computer-based exercises and homework problems -- unique to this text and comprising 25% of the total number of problems -- encourage students to address realistic and challenging problems, experiment with what if scenarios, and easily obtain graphical outputs. Problems are designed to progressively enhance MATLAB-use proficiency, so students need not be familiar with MATLAB at the start of your course. Program scripts that are answers to exercises in the text are available at no charge in electronic form (see Teaching Resources below). *Supplement and Review Mini-Chapters after each of the text's three parts contain an extensive review list of terms, test-like problem sets with answers, and detailed suggestions on supplemental reading to reinforce students' learning and help them prepare for exams. *Read-Only Chapters, strategically placed to provide a change of pace during the course, provide informative, yet enjoyable reading for students. *Measurement Details and Results samples offer students a realistic perspective on the seldom-perfect nature of device characteristics, contrary to the way they are often represented in introductory texts. Content Highlig

The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instruct

In the new sixth edition, readers will be able to clearly see the relevance of accounting in their everyday lives. The authors introduce challenging accounting concepts with examples that

are familiar to everyone, which helps build motivation to learn the material. Accounting issues are also placed within the context of marketing, management, IT, and finance. Semiconductor Physics and Devices

Applied Photovoltaics

Electronic Circuits (Sie) 3E

Compound Semiconductors

Financial Accounting

The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.

Semiconductor Physics and DevicesBasic Principles

Semiconductor Physics and Devices provides an introduction to the physics of semiconductor materials and devices. The text is supported by a large number of examples and exercises to test the understanding of topics.

This junior-level electronics text provides a foundation for analyzing and designing analog and digital electronic circuits. Computer analysis and design are recognized as significant factors in electronics throughout the book. The use of computer tools is presented carefully, alongside the important hand analysis and calculations. The author, Don Neamen, has many years experience as an enginering educator and an engineer. His experience shines through each chapter of the book, rich with realistic examples and practical rules of thumb. The book is divided into three parts. Part 1 covers semiconductor devices and basic circuit applications. Part 2 covers more advanced topics in analog electronics, and Part 3 considers digital electronic circuits.

Semiconductor Devices : Basic Principles

Quantum Mechanics

The Indian National Bibliography

Field and Wave Electromagnetics

Photonics

The new edition of this thoroughly considered textbook provides a reliable, accessible and comprehensive guide for students of photovoltaic applications and renewable energy engineering. Written by a group of award-winning authors it is brimming with information and is carefully designed to meet the needs of its readers. Along with exercises and references at the end of each chapter, it features a set of detailed technical appendices that provide essential equations, data sources and standards. The new edition has been fully updated with the latest information on photovoltaic cells, modules, applications and policy. Starting from basics with 'The Characteristics of Sunlight' the reader is guided step-by-step through semiconductors and p-n junctions; the behaviour of solar cells; cell properties and design; and PV cell interconnection and module fabrication. The book covers stand-alone photovoltaic systems; specific purpose photovoltaic systems; remote area power supply systems; grid-connected photovoltaic systems and water pumping. Applied Photovoltaics, Third Edition is highly illustrated and very accessible, providing the reader with all the information needed to start working with photovoltaics.

Quantum mechanics touches all areas of physics, chemistry, life sciences, and engineering. It has emerged as a tool for researching and

Quantum mechanics touches all areas of physics, chemistry, life sciences, and engineering. It has emerged as a tool for researching and developing new technology that has had a deep impact on modern life. An essential ingredient of quantum mechanics is the role of the observer and the duality between particle and wave properties of matter at very small scales. This book covers such topics as complex space forms of quantum mechanics, entropy in quantum mechanics, and equations of relativistic quantum mechanics as well as applications of quantum mechanics to more complicated situations. Written by international experts, the book illustrates the wide scope, influence, and applicability of quantum mechanics.

Designed to support interactive teaching and computer assisted self-learning, this second edition of Electrical Energy Conversion and Transport is thoroughly updated to address the recent environmental effects of electric power generation and transmission, which have

become more important together with the deregulation of the industry. New content explores different power generation methods, including renewable energy generation (solar, wind, fuel cell) and includes new sections that discuss the upcoming Smart Grid and the distributed power generation using renewable energy generation, making the text essential reading material for students and practicing engineers.

Neamen's Semiconductor Physics and Devices, Third Edition. deals with the electrical properties and characteristics of semiconductor materials and devices. The goal of this book is to bring together quantum mechanics, the quantum theory of solids, semiconductor material physics, and semiconductor device physics in a clear and understandable way.

An Interactive Computer-Based Approach Silicon Nanoelectronics Semiconductor Device Fundamentals Basic Principles

Istc/cstic 2009 (cistc)

Designed for senior undergraduate/first year graduate students in electrical engineering departments, this text covers key subjects in optical electronics and their applications in modern optical communications where optical waves are used as carriers of information.

This book is designed to help readers gain a basic understanding of semiconductor devices and the physical operating principles behind them. This two-fold approach 1) provides the user with a sound understanding of existing devices, and 2) helps them develop the basic tools with which they can later learn about applications and the latest devices. The piece provides one of the most comprehensive treatments of all the important semiconductor devices, and reflects the most current trends in the technology and theoretical understanding of the devices. FEATURES/BENEFITS *NEW--Thoroughly updated to reflect the most current trends in the technology and theoretical understanding of devices. *NEW--Expanded description of silicon Czochralski growth, wafer production, and vapor phase epitaxy (Ch. 1). *NEW--Clearer discussion of chemical bonding, energy band formation and hole transport (Chs. 2, 3 and 4). *NEW--Consolidated coverage of p-n junction diodes and its applications (Ch. 5). *NEW--Greatly expanded/updated discussion of device fabrication processes (Ch. 5 and appendices). *NEW--Earlier discussion of MOS devices (Ch. complementary MOS field effect transistors (MOSFETs) in integrated circuits today. *NEW--Major revision of chapter on Field Effect Transistors (Ch. 6)--Both in the underlying theory as well as discussion of a variety of short channel, high field and hot carrier effects in scaled, ultra-small MOSFETs. Includes extensive discussions of the current-voltage and capacitance-voltage characteristics of these devices--and the information that can be gleaned from such measurements. *NEW--Updated chapter on Bipolar Junction Transistors (BJTs) (Ch. 7)--To reflect current technology. Describes higher-order effects (including the Kirk effect and Webster effect); discusses the Gummel-Poon model (which is more elaborate and physically more accurate than the Ebers-Moll model); and updates the fabrication aspects of BJTs. *NEW--Consolidated coverage of optoelectronic devices in a single chapter (Ch. 8)--Brings the discussion of semiconductor lasers into the same chapter as LEDs and detectors *Reflects the growing importance of optoelectronics. *NEW--Updated coverage of integrated circuits (Ch. concerted shift to CMOS applications, such as logic and memory integrated circuits. *NEW--A section on the insulated gate bipolar transistor (Ch. 11)--A device that is gradually supplanting the semiconductor-controlled rectifier. *NEW--Real data--Wherever feasible, replaces idealized current-voltage and capacitance-voltage plots with real data. An Introduction to Semiconductor Devices by Donald Neamen provides an understanding of the characteristics, operations and limitations of semiconductor devices. In order to provide this understanding, the book brings together the fundamental physics of the semiconductor material and the semiconductor device physics. This new text provides an accessible and modern presentation of material. Quantum mechanic material is minimal, and the most advanced material is designated with an icon. Excellent pedagogy is present throughout the book in the form of interesting chapters openers, worked examples, a variety of exercises, key terms, and end of chapter problems.

This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.

Microchip Fabrication, 5th Ed.

Physics and Materials Properties

Fundamentals of Semiconductors

Fundamentals of Semiconductor Fabrication

Semiconductor Gas Sensors

Market_Desc: Graduate and Advanced Undergraduate Students of Electrical Engineering About The Book: This comprehensive introduction to the elementary theory and properties of semiconductors describes the basic physics of semiconductor materials and technologies for fabrication of semiconductor devices. Addresses approaches to modeling and provides details of measurement techniques. It also includes numerous illustrative examples and graded problems.

By helping students develop an intuitive understanding of the subject, Microelectronics teaches them to think like engineers. The second edition of Razavi's Microelectronics retains its hallmark emphasis on analysis by inspection and building students' design intuition, and it

incorporates a host of new pedagogical features that make it easier to teach and learn from, including: application sidebars, self-check problems with answers, simulation problems with SPICE and MULTISIM, and an expanded problem set that is organized by degree of difficulty and more clearly associated with specific chapter sections.

This book provides an overview of compound semiconductor materials and their technology. After presenting a theoretical background, it describes the relevant material preparation technologies for bulk and thin-layer epitaxial growth. It then briefly discusses the electrical, optical, and structural properties of semiconductors, complemented by a description of the most popular characterization tools, before more complex hetero— and low-dimensional structures are discussed. A special chapter is devoted to GaN and related materials, owing to their huge importance in modern optoelectronic and electronic devices, on the one hand, and their particular properties compared to other compound semiconductors, on the other. In the last part of the book, the physics and functionality of optoelectronic and electronic device structures (LEDs, laser diodes, solar cells, field-effect and heterojunction bipolar transistors) are discussed on the basis of the specific properties of compound semiconductors presented in the preceding chapters of the book. Compound semiconductors form the back-bone of all opto-electronic and electronic devices besides the classical Si electronics. Currently the most important field is solid state lighting with highly efficient LEDs emitting visible light. Also laser diodes of all wavelength ranges between mid-infrared and near ultraviolet have been the enabler for a huge number of unprecedented applications like CDs and DVDs for entertainment and data storage, not to speak about the internet, which would be impossible without optical data communications with infrared laser diodes as key elements. This book provides a concise overview over this class of materials, including the most important technological aspects for their fabrication and characterisation, also covering the most relevant devices based on compound semiconductors. It presents therefore an excellent introduction into this subject not only for students, but also for engineers and scientist who intend to put their focus on this field of

The Art of Electronics: The x-Chapters expands on topics introduced in the best-selling third edition of The Art of Electronics, completing the broad discussions begun in the latter. In addition to covering more advanced materials relevant to its companion, The x-Chapters also includes extensive treatment of many topics in electronics that are particularly novel, important, or just exotic and intriguing. Think of The x-Chapters as the missing pieces of The Art of Electronics, to be used either as its complement, or as a direct route to exploring some of the most exciting and oft-overlooked topics in advanced electronic engineering. This enticing spread of electronics wisdom and expertise will be an invaluable addition to the library of any student, researcher, or practitioner with even a passing interest in the design and analysis of electronic circuits and instruments. You'll find here techniques and circuits that are available nowhere else.

With Applications to Optoelectronic Devices
Electronic Properties of Materials
Electrical Energy Conversion and Transport
Physics, Technology, and Device Concepts
Circuit Analysis and Design