Fundamentals Of Materials Science And Engineering An Integrated Approach 4th Edition Updated and improved, this revised edition of Michel Barsoum's classic text Fundamentals of Ceramics presents readers with an exceptionally clear and comprehensive introduction to ceramic science. Barsoum offers introductory coverage of ceramics, their structures, and properties, with a distinct emphasis on solid state physics and chemistry. Key equations are derived from first principles to ensure a thorough understanding of the concepts involved. The book divides naturally into two parts. Chapters 1 to 9 consider bonding in ceramics and their resultant physical structures, and the electrical, thermal, and other properties that are dependent on bonding type. The second part (Chapters 11 to 16) deals with those factors that are determined by microstructure, such as fracture and fatigue, and thermal, dielectric, magnetic, and optical properties. Linking the two sections is Chapter 10, which describes sintering, grain growth, and the development of microstructure. Fundamentals of Ceramics is ideally suited to senior undergraduate and graduate students of materials science and engineering and related subjects. Milton Ohring's Engineering Materials Science integrates the scientific nature and modern applications of all classes of engineering materials. This comprehensive, introductory textbook will provide undergraduate engineering students with the fundamental background needed to understand the science of structure-property relationships, as well as address the engineering concerns of materials into useful products, and how material degrade and fail in service. Specific topics include: physical and electronic structure; thermodynamics and kinetics; processing; mechanical, electrical, magnetic, and optical properties; degradation; and failure and reliability. The book offers superior coverage of electrical, optical, and magnetic materials than competing text. The author has taught introductory courses in material science and engineering both in academia and industry (AT&T Bell Laboratories) and has also written the well-received book, The Material Science of Thin Films (Academic Press). Smart materials are of significant interest and this is the first textbook to provide a comprehensive graduate level view of topics that relate to this field. Fundamentals of Smart Materials consists of a workbook and solutions manual covering the basics of different functional material systems aimed at advanced undergraduate and postgraduate students. Topics include piezoelectric materials, shape memory alloys, mechanochromic materials, thermochromic materials, chemomechanical polymers and self-healing materials. Each chapter provides an introduction to the material, its applications and uses with example problems, fabrication and manufacturing techniques, conclusions, homework problems and a bibliography. Edited by a leading researcher in smart materials, the textbook can be adopted by teachers in materials science and engineering, chemistry, physics and chemical engineering. The properties of materials provide key information regarding their appropriateness for a product and how they will function in service. The Third Edition provides a relevant discussion and vital examples of the fundamentals of materials science so that these details can be applied in real-world situations. Horath effectively combines principles and theory with practical applications used in today's machines, devices, structures, and consumer products. The basic premises of materials science and mechanical behavior are explored as they relate to all types of materials: ferrous and nonferrous metals; polymers and elastomers; wood and wood products; ceramics and glass; cement, concrete, and asphalt; composites; adhesives and coatings; fuels and lubricants; and smart materials. Valuable and insightful coverage of the destructive and nondestructive evaluation of material properties builds the groundwork for inspection processes and testing techniques, such as tensile, creep, compression, shear, bend or flexure, hardness, impact, and fatigue. Laboratory exercises and reference materials are included for hands-on learning in a supervised environment, which promotes a perceptive understanding of why we study and test materials and develop skills in industry-sanctioned testing procedures, data collection, reporting and graphing, and determining additional appropriate tests. Materials Science and Engineering An Integrated Approach Fundamentals of Materials Science and Engineering: an Integrated Approach, 5e Abridged Print Companion with WileyPlus LMS Card Set Fundamentals of Radiation Materials Science Callister and Rethwisch's Fundamentals of Materials Science and Engineering, 4th Edition continues to take the integrated approach to the organization of topics. That is, one specific structure, characteristic, or property type at a time is discussed for all three basic material types -- metals, ceramics, and polymeric materials. This order of presentation allows for the early introduction of non-metals and supports the engineer's role in choosing materials. Using clear, concise terminology that is familiar to students, Fundamentals presents material at an appropriate level for both student comprehension and instructors who may not have a materials background. Nanocrystalline materials exhibit exceptional mechanical properties, representing an exciting new class of structural materials for technological applications. The advancement of this important field depends on the development of new fabrication methods, and an appreciation of the underlying nano-scale and interface effects. This authored book addresses these essential issues, presenting for the first time a fundamental, coherent and current account at the theoretical and practical level of nanocrystalline and nanocomposite bulk materials and coatings. The subject is approached systematically, covering processing methods, key structural and mechanical properties, and a wealth of applications. This is a valuable resource for graduate students studying nanomaterials science and nanotechnologies, as well as researchers and practitioners in materials science and engineering. This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. "In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work. "G. Petzow in International Journal of Materials Research. "The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick 'cook book' type text, but as a serious, critical treatise for some significant time to come. "G.S. Upadhyaya in Science of Sintering. "The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams. Included are many footnotes, 'Intermezzos', 'Epilogues' and asides within the text from the author 's experience. This soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science. " M. Davies in Materials World. * Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion Understanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world 's leading investigators. · Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials · Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures • Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion Materials Science and Engineering of Carbon Fundamentals of Materials and Design Fundamentals, Materials and Device Technology Fundamentals of Metallurgy An Interactive E . Text This text is an unbound, three hole punched version. Fundamentals of Materials Science and Engineering: An Integrated Approach, Binder Ready Version, 5th Edition takes an integrated approach to the sequence of topics - one specific structure, characteristic, or property type is covered in turn for all three basic material types: metals, ceramics, and polymeric materials. This presentation permits the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Using clear, concise terminology that is familiar to students, Fundamentals presents material at an appropriate level for both student comprehension and instructors who may not have a materials background. This text is an unbound, three hole punched version. Access to WileyPLUS sold separately. The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 "The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science." - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society. This undergraduate textbook merges traditional solid state physics with contemporary condensed matter physics, providing an up-to-date introduction to the major concepts that form the foundations of condensed materials. The main foundational principles are emphasized, providing students with the knowledge beginners in the field should understand. The book is structured in four parts and allows students to appreciate how the concepts in this broad area build upon each other to produce a cohesive whole as they work through the chapters. Illustrations work closely with the text to convey concepts and ideas visually, enhancing student understanding of difficult material, and end-of-chapter exercises varying in difficulty allow students to put into practice the theory they have covered in each chapter and reinforce new concepts. The core set of topics that are discussed in a typical materials course will appear in print; this print component will be included on a CD-ROM, which is the complete materials science text, in an eBook format. Interactive software is incorporated on the CD, which includes interactive simulations. SI Version Properties, Testing, and Laboratory Exercises, Third Edition Characterization Fundamentals of Materials Science and Engineering Fundamentals of Materials Science and Engineering: An Integrated Approach, 5e for Clarkson University with WileyPLUS Card Set Materials Science and Engineering: An Introduction promotes student understanding of the three primary types of materials (metals, ceramics, and polymers) and composites, as well as the relationships that exist between the structural elements of materials and their properties. Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behaviour. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modelling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need. Fundamentals of Materials Science and Engineering takes an integrated approach to the sequence of topics - one specific structure, characteristic, or property type is covered in turn for all three basic material types: metals, ceramics, and polymeric materials. This presentation permits the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Using clear, concise terminology that is familiar to students, Fundamentals presents material at an appropriate level for both student comprehension and instructors who may not have a materials background. Materials Science and Engineering of Carbon: Characterization discusses 12 characterization techniques, focusing on their application to carbon materials, including X-ray diffraction, X-ray small-angle scattering, transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, image analysis, X-ray photoelectron spectroscopy, magnetoresistance, electrochemical performance, pore structure analysis, thermal analyses, and quantification of functional groups. Each contributor in the book has worked on carbon materials for many years, and their background and experience will provide guidance on the development and research of carbon materials and their further applications. Focuses on characterization techniques for carbon materials Authored by experts who are considered specialists in their respective techniques Presents practical results on various carbon materials, including fault results, which will help readers understand the optimum conditions for the characterization of carbon materials **Introduction to Computational Materials Science** Fundamentals of Creep in Metals and Alloys Fundamentals to Applications An Introduction for Students of Physics and Materials Science Fundamentals of Materials Science for Technologists This text is an unbound, binder-ready edition. Callister and Rethwisch's Fundamentals of Materials Science and Engineering 4th Edition continues to take the integrated approach to the organization of topics. That is, one specific structure, characteristic, or property type at a time is discussed for all three basic material types — metals, ceramics, and polymeric materials. This order of presentation allows for the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Also discussed are new, cuttingedge materials. Using clear, concise terminology that is familiar to students, Fundamentals presents material at an appropriate level for both student comprehension and instructors who may not have a materials background. Fundamentals of Materials Science and EngineeringAn Integrated ApproachJohn Wiley & Sons This first systematic, authoritative and thorough treatment in one comprehensive volume presents the fundamentals and technologies of the topic, elucidating all aspects of ZnO materials and devices. Following an introduction, the authors look at the general properties of ZnO, as well as its growth, optical processes, doping and ZnO-based dilute magnetic semiconductors. Concluding sections treat bandgap engineering, processing and ZnO nanostructures and nanodevices. Of interest to device engineers, physicists, and semiconductor and solid state scientists in general. This book offers a strong introduction to fundamental concepts on the basis of materials science. It conveys the central issue of materials science, distinguishing it from merely solid state physics and solid state chemistry, namely to develop models that provide the relation between the microstructure and the properties. The book is meant to be used in the beginning of a materials science and engineering study as well as throughout an entire undergraduate and even graduate study as a solid background against which specialized texts can be studied. Topics dealt with are "crystallography", "lattice defects", "microstructural analysis", "phase equilibria and transformations" and "mechanical strength". After the basic chapters the coverage of topics occurs to an extent surpassing what can be offered in a freshman's course. About the author Prof. Mittemeijer is one of the top scientists in materials science, whose perceptiveness and insight have led to important achievements. This book witnesses of his knowledge and panoramic overview and profound understanding of the field. He is a director of the Max Planck Institute for Metals Research in Stuttgart. Fundamentals of Materials Science and Engineering: An Integrated Approach, 5e Abridged Print Companion with WileyPlus Card Set Fundamentals of Smart Materials Zinc Oxide The Microstructure–Property Relationship Using Metals as Model Systems Fundamentals of Materials Science and Engineering: An Integrated Approach, 5e WileyPLUS NextGen Card with Loose-Leaf Print Companion Set Building on the success of previous editions, this book continues to provide engineers with a strong understanding of the three primary types of materials and composites, as well as the relationships that exist between the structural elements of materials and their properties. The relationships among processing, structure, properties, and performance components for steels, glass-ceramics, polymer fibers, and silicon semiconductors are explored throughout the chapters. The discussion of the construction of crystallographic directions in hexagonal unit cells is expanded. At the end of each chapter, engineers will also find revised summaries and new equation summaries to reexamine key concepts. A little over ?ve years have passed since the ?rst edition of this book appeared in print. Seems like an instant but also eternity, especially considering numerous developments in the hardware and software that have made it from the laboratory test beds into the real world of powder diffraction. This prompted a revision, which had to be beyond cosmetic limits. The book was, and remains focused on standard laboratory powder diffractometry. It is still meant to be used as a text for teaching students about the capabilities and limitations of the powder diffraction method. We also hope that it goes beyond a simple text, and therefore, is useful as a reference to practitioners of the technique. The original book had seven long chapters that may have made its use as a text - convenient. So the second edition is broken down into 25 shorter chapters. The ?rst ?fteen are concerned with the fundamentals of powder diffraction, which makes it much more logical, considering a typical 16-week long semester. The last ten ch- ters are concerned with practical examples of structure solution and re?nement, which were preserved from the ?rst edition and expanded by another example – R solving the crystal structure of Tylenol . There are two WileyPLUS platforms for this title, so please note that you should purchase this version if your course code is a 6 digit numerical code. This packages includes a loose-leaf edition of Fundamentals of Materials Science and Engineering, 5th Edition, a WileyPLUS registration code, and 6 months access to the eTextbook (accessible online and offline). For customer technical support, please visit http://www.wileyplus.com/support. WileyPLUS registration cards are only included with new products. Used and rental products may not include valid WileyPLUS registration cards. Fundamentals of Materials Science and Engineering, 5th Edition takes an integrated approach to the sequence of topics – one specific structure, characteristic, or property type is covered in turn for all three basic material types: metals, ceramics, and polymeric materials. This presentation permits the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Using clear, concise terminology that is familiar to students, Fundamentals presents material at an appropriate level for both student comprehension and instructors who may not have a materials background. There are two WileyPLUS platforms for this title, so please note that you should purchase this version if your course code starts with an "A". This packages includes a loose-leaf edition of Fundamentals of Materials Science and Engineering, 5th Edition, a new WileyPLUS registration code, and 6 months access to the eTextbook (accessible online and offline). For customer technical support, please visit http://www.wileyplus.com/support. WileyPLUS registration cards are only included with new products. Used and rental products may not include valid WileyPLUS registration cards. Fundamentals of Materials Science and Engineering, 5th Edition takes an integrated approach to the sequence of topics – one specific structure, characteristic, or property type is covered in turn for all three basic material types: metals, ceramics, and polymeric materials. This presentation permits the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Using clear, concise terminology that is familiar to students, Fundamentals presents material at an appropriate level for both student comprehension and instructors who may not have a materials background. Fundamentals of Materials Science and Engineering: An Integrated Approach, 5th Edition Metals and Allovs Neutrons and Synchrotron Radiation in Engineering Materials Science Fundamentals of Ceramics Materials Experience ALERT: The Legacy WileyPLUS platform retires on July 31, 2021 which means the materials for this course will be invalid and unusable. If you were directed to purchase this product for a course that runs after July 31, 2021, please contact your instructor immediately for clarification. For customer technical support, please visit http://www.wileyplus.com/support. Fundamentals of Materials Science and Engineering takes an integrated approach in that one specific structure, characteristic, or property type is covered in turn for all three basic material types: metals, ceramics, and polymeric materials. This presentation permits the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Using clear, concise terminology that is familiar to students, this program presents material at an appropriate level for both student comprehension and instructors who may not have a materials background. Callister and Rethwisch's Fundamentals of Materials Science and Engineering 4th Edition continues to take the integrated approach to the organization of topics. That is, one specific structure, characteristic, or property type at a time is discussed for all three basic material types: metals, ceramics, and polymeric materials. This order of presentation allows for the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Also discussed are new, cutting-edge materials. Using clear, concise terminology that is familiar to students, Fundamentals presents material at an appropriate level for both student comprehension and instructors who may not have a materials background. Retaining its proven concept, the second edition of this ready reference specifically addresses the need of materials engineers for reliable, detailed information on modern material characterization methods. As such, it provides a systematic overview of the increasingly important field of characterization of engineering materials with the help of neutrons and synchrotron radiation. The first part introduces readers to the fundamentals of structure-property relationships in materials and the radiation sources suitable for materials characterization. The second part then focuses on such characterization techniques as diffraction and scattering methods, as well as direct imaging and tomography. The third part presents new and emerging methods of materials characterization in the field of 3D characterization techniques like three-dimensional X-ray diffraction microscopy. The fourth and final part is a collection of examples that demonstrate the application of the methods introduced in the first parts to problems in materials science. With thoroughly revised and updated chapters and now containing about 20% new material, this is the must-have, in-depth resource on this highly relevant topic. Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behavior. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modeling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need. Fundamentals of Materials for Energy and Environmental Sustainability Physical Foundations of Materials Science Engineering Materials Science Fundamentals and Applications APS104S: Introduction to Materials and Chemistry There currently exists an abundance of materials selection advice for designers suited to solving technical product requirements. In contrast, a stark gap can be found in current literature that articulates the very real personal, social, cultural and economic connections between materials and the design of the material world. In Materials Experience: fundamentals of materials and design, thirty-four of the leading academicians and experts, alongside 8 professional designers, have come together for the first time to offer their expertise and insights on a number of topics common to materials and product design. The result is a very real personal, social, cultural and economic connections between materials and the design of the materials experts, alongside 8 professional designers, have come together for the first time to offer their expertise and insights on a number of topics common to materials and product design. The result is a very real personal, social, cultural and economic connections between the design of the materials and experts, alongside 8 professional designers, have come together for the first time to offer their expertise and insights on a number of topics common to materials and product design. The result is a very real personal, social, cultural and economic connections between the materials and experts, alongside 8 professional designers, have come together for the first time to offer their expertise and insights on a number of topics common to materials and product design. The result is a very real personal designer, and insights on a number of topics common to materials and product design. The result is a very real personal designer, and to such a such a such as a such a such as a such a such as How will we meet rising energy demands? What are our options? Are there viable long-term solutions for the future? Learn the fundamental physical, chemical and materials science at the heart of: • Renewable/non-renewable energy sources • Future transportation systems • Energy efficiency • Energy storage Whether you are a student taking an energy course or a newcomer to the field, this textbook will help you understand critical relationships between the environment, energy and sustainability. Leading experts provide comprehensive coverage of each topic, bringing together diverse subject matter by integrating theory with engaging insights. Each chapter includes helpful features to aid understanding, including a historical overview to provide context, suggested further reading and questions for discussion. Every subject is beautifully illustrated and brought to life with full color images and color-coded sections for easy browsing, making this a complete educational package. Fundamentals of Materials for Energy and Environmental Sustainability will enable today's scientists and educate future generations. In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them transmission electron microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the materials science more transparent. As product specifications become more demanding, manufacturers require steel with ever more specific functional properties. As a result, there has been a wealth of research on how those properties emerge during steelmaking. Fundamentals of metallurgy summarises this research and its implications for manufacturers. The first part of the book reviews the effects of processing on the properties of metals with a range of chapters on such phenomena as phase transformations, types of kinetic reaction, transport and interfacial phenomena. Authors discuss how these processes and the resulting properties of metals can be modelled and predicted. Part two discusses the implications of this research for improving steelmaking and steel properties. With its distinguished editor and international team of contributors, Fundamentals of metallurgy is an invaluable reference for steelmakers and manufacturers requiring high-performance steels in such areas as automotive and aerospace engineering. It will also be useful for those dealing with non-ferrous metals and alloys, materials environmentalists and above all, high technology industries designing processes towards materials with tailored properties. Summarises key research and its implications for manufacturers Essential reading for steelmakers and manufacturers Written by leading experts from both industry and academia Fundamentals of Condensed Matter and Crystalline Physics Structural Nanocrystalline Materials Fundamentals of Materials Science and Engineering, Binder Ready Version An Introduction From Fundamentals to Applications This book is an eye-opening treatise on the fundamentals of the effects of radiation on metals and alloys. When energetic particles strike a solid, numerous processes occur that can change the physical and mechanical properties of the material. Metals and alloys represent an important class of materials that are subject to intense radiation fields. Radiation causes metals and alloys to swell, distort, blister, harden, soften and deform. This textbook and reference covers the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Fundamentals of Materials Science and Engineering: An Integrated Approach, 5e EPUB Reg Card with Abridged Print Companion Set Fundamentals of Materials Science and Engineering: An Integrated Approach, WileyPLUS Card with Loose-leaf Set Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition Fundamentals of Materials Science