Stochastic Calculus For Finance li Continuous Time Models V 2 Springer Finance

Since the publication of the first edition of this book, the area of mathematical finance has grown rapidly, with financial analysts using more sophisticated mathematical concepts, such as stochastic integration, to describe the behavior of markets and to derive computing methods. Maintaining the lucid style of its popular predecessor, Introduction

Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.

From the reviews: "The author, a lucid mind with a fine pedagogical instinct, has written a splendid text. He starts out by stating six problems in the introduction in which stochastic differential equations play an essential role in the solution. Then, while developing stochastic calculus, he frequently returns to these problems and variants thereof and to many other problems to show how the theory works and to motivate the next step in the theoretical development. Needless to say, he restricts himself to stochastic integration with respect to Brownian motion. He is not hesitant to give some basic results without proof in order to leave room for "some more basic applications... The book can be an ideal text for a graduate course, but it is also recommended to analysts (in particular, those working in differential equations and deterministic dynamical systems and control) who wish to learn guickly what stochastic differential equations are all about." Acta Scientiarum Mathematicarum, Tom 50, 3-4, 1986#1 "The book is well written, gives a lot of nice applications of stochastic differential equation theory, and presents theory and applications of stochastic differential equations in a way which makes the book useful for mathematical seminars at a low level. (...) The book (will) really motivate scientists from nonmathematical fields to try to understand the usefulness of stochastic differential equations in their fields." Metrica#2

This book will prepare you for quantitative finance interviews by helping you zero in on the key concepts that are frequently tested in such interviews. In this book we analyze solutions to more than 200 real interview problems and provide valuable insights into how to ace quantitative interviews. The book covers a variety of topics that you are likely to encounter in quantitative interviews: brain teasers, calculus, linear algebra, probability, stochastic processes and stochastic calculus, finance and programming. Brownian Motion, Martingales, and Stochastic Calculus A Course in Derivative Securities Continuous-Time Models Stochastic Calculus Credit Risk: Modeling, Valuation and Hedging **BSDEs with Jumps** A comprehensive overview of the theory of stochastic processes and its connections to asset pricing, accompanied by some concrete applications. This book presents a selfcontained, comprehensive, and yet concise and condensed overview of the theory and methods of probability, integration, stochastic processes, optimal control, and their connections to the principles of asset pricing. The book is broader in scope than other Page 3/28

introductory-level graduate texts on the subject, requires fewer prerequisites, and covers the relevant material at greater depth, mainly without rigorous technical proofs. The book brings to an introductory level certain concepts and topics that are usually found in advanced research monographs on stochastic processes and asset pricing, and it attempts to establish greater clarity on the connections between these two fields. The book begins with measure-theoretic probability and integration, and then develops the classical tools of stochastic calculus, including stochastic calculus with jumps and Lévy processes. For asset pricing, the book begins with a brief overview of risk preferences and general equilibrium in incomplete finite endowment economies, followed by the classical asset pricing setup in continuous time. The goal is to present a coherent single overview. For example, the text introduces discrete-time martingales as a consequence of market equilibrium considerations and connects them to the stochastic discount factors before Page 4/28

offering a general definition. It covers concrete option pricing models (including stochastic volatility, exchange options, and the exercise of American options), Merton's investment-consumption problem, and several other applications. The book includes more than 450 exercises (with detailed hints). Appendixes cover analysis and topology and computer code related to the practical applications discussed in the text.

Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, 'This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract'. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH This book offers a rigorous and selfcontained presentation of stochastic integration and stochastic calculus within the general framework of Page 5/28

continuous semimartingales. The main tools of stochastic calculus, including Itô's formula, the optional stopping theorem and Girsanov's theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. Page 6/28

The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.

Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclusion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be Page 7/28

found on the book website. Stochastic Calculus for Finance II The Binomial Asset Pricing Model Introduction to Stochastic Calculus Applied to Finance Theory and Practice Stochastic Calculus for Quantitative Finance

A Practical Introduction

Stochastic Finance: An Introduction with Market Examples presents an introduction to pricing and hedging in discrete and continuous time financial models without friction, emphasizing the complementarity of analytical and probabilistic methods. It demonstrates both the power and limitations of mathematical models in finance, covering the basics of finance and stochastic calculus, and builds up to special topics, such as options, derivatives, and credit default and jump processes. It details the techniques required to model the time evolution of risky assets. The book discusses a wide range of classical topics including Black-Scholes pricing, exotic and American options, term structure modeling and change of Page 8/28

numéraire, as well as models with jumps. The author takes the approach adopted by mainstream mathematical finance in which the computation of fair prices is based on the absence of arbitrage hypothesis, therefore excluding riskless profit based on arbitrage opportunities and basic (buying low/selling high) trading. With 104 figures and simulations, along with about 20 examples based on actual market data, the book is targeted at the advanced undergraduate and graduate level, either as a course text or for self-study, in applied mathematics, financial engineering, and economics. Stochastic differential equations are differential equations whose solutions are stochastic processes. They exhibit appealing mathematical properties that are useful in modeling uncertainties and noisy phenomena in many disciplines. This book is motivated by applications of stochastic differential equations in target tracking and medical technology and, in particular, their use in methodologies such as filtering, smoothing, parameter estimation, and machine learning. It Page 9/28

builds an intuitive hands-on understanding of what stochastic differential equations are all about, but also covers the essentials of It calculus, the central theorems in the field, and such approximation schemes as stochastic Runge-Kutta. Greater emphasis is given to solution methods than to analysis of theoretical properties of the equations. The book's practical approach assumes only prior understanding of ordinary differential equations. The numerous worked examples and end-of-chapter exercises include application-driven derivations and computational assignments.

MATLAB/Octave source code is available for download, promoting hands-on work with the methods.

This concisely written book is a rigorous and self-contained introduction to the theory of continuous-time stochastic processes. Balancing theory and applications, the authors use stochastic methods and concrete examples to model real-world problems from engineering, biomathematics, biotechnology, and finance. Suitable as a textbook for Page 10/28

graduate or advanced undergraduate courses, the work may also be used for self-study or as a reference. The book will be of interest to students, pure and applied mathematicians, and researchers or practitioners in mathematical finance, biomathematics, physics, and engineering. Readership: Undergraduates and researchers in probability and statistics; applied, pure and financial mathematics; economics; chaos. Malliavin Calculus in Finance The Mathematics of Financial Derivatives Applied Stochastic Differential Equations Introduction to Stochastic Calculus with Applications A Student Introduction An Introduction with Applications This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in

presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and araduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling. This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, nonlinear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.

A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore

stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.

This accessible introduction to the mathematical underpinnings of finance concentrates on the probabilistic theory of continuous arbitrage pricing of financial derivatives. It includes a solved example for every new technique presented, numerous exercises, and a Further Reading list in each chapter.

"Deals with pricing and hedging financial derivatives.... Computational methods are introduced and the text contains the Excel VBA routines corresponding to the formulas and procedures described in the book. This is valuable since computer simulation can help readers understand the theory....The

book...succeeds in presenting intuitively advanced derivative modelling... it provides a useful bridge between introductory books and the more advanced literature."

--MATHEMATICAL REVIEWS

Theory, Models, and Applications to Finance, Biology, and Medicine

An Introduction with Market Examples Elementary Stochastic Calculus with Finance in View

An Introduction Through Theory and Exercises Mathematical Finance

Stochastic Calculus For Finance Ii

From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students. researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis Mathematical finance requires the use of advanced mathematical techniques drawn from the theory of probability, stochastic processes and stochastic differential equations. These areas are generally introduced and developed at an abstract level, making it problematic

when applying these techniques to practical issues in finance. Problems and Solutions in Mathematical Finance Volume I: Stochastic Calculus is the first of a four-volume set of books focusing on problems and solutions in mathematical finance. This volume introduces the reader to the basic stochastic calculus concepts required for the study of this important subject. providing a large number of worked examples which enable the reader to build the necessary foundation for more practical orientated problems in the later volumes. Through this application and by working through the numerous examples, the reader will properly understand and appreciate the fundamentals that underpin mathematical finance. Written mainly for students, industry practitioners and those involved in teaching in this field of study, Stochastic Calculus provides a valuable reference book to complement one's further understanding of mathematical finance. Never HIGHLIGHT a Book Again! Virtually all of the testable terms, concepts, persons, places, and events from the

textbook are included. Cram101 Just the FACTS101 studyguides give all of the outlines, highlights, notes, and guizzes for your textbook with optional online comprehensive practice tests. Only Cram101 is Textbook Specific. Accompanys: 9780387401010. **Backward stochastic differential** equations with jumps can be used to solve problems in both finance and insurance. Part I of this book presents the theory of BSDEs with Lipschitz generators driven by a Brownian motion and a compensated random measure, with an emphasis on those generated by step processes and Lévy processes. It discusses key results and techniques (including numerical algorithms) for BSDEs with jumps and studies filtrationconsistent nonlinear expectations and gexpectations. Part I also focuses on the mathematical tools and proofs which are crucial for understanding the theory. Part II investigates actuarial and financial applications of BSDEs with jumps. It considers a general financial and insurance model and deals with pricing and hedging of insurance equitylinked claims and asset-liability

management problems. It additionally investigates perfect hedging, superhedging, guadratic optimization, utility maximization, indifference pricing, ambiguity risk minimization, no-gooddeal pricing and dynamic risk measures. Part III presents some other useful classes of BSDEs and their applications. This book will make BSDEs more accessible to those who are interested in applying these equations to actuarial and financial problems. It will be beneficial to students and researchers in mathematical finance, risk measures, portfolio optimization as well as actuarial practitioners. **Stochastic Finance** Lévy Processes and Stochastic Calculus Monte Carlo Methods in Financial Engineering **Continuous-Time Models by Steven E.** Shreve, ISBN **Financial Calculus** Introduction to Theory and Computation **Publisher Description** [Note: eBook version of latest edition now available; see Amazon author page for details.] THIS IS A MUST **READ!** It is the first and the original book of quantitative questions from finance job interviews. Painstakingly

revised over 25 years and 21 editions, Heard on The Street has been shaped by feedback from many hundreds of readers. With well over 60,000 copies in print, its readership is unmatched by any competing book. The revised 21st edition contains 239 quantitative questions collected from actual job interviews in investment banking, investment management, and options trading. The interviewers use the same questions year-after-year, and here they are with detailed solutions! This edition also includes 264 non-quantitative actual interview questions, giving a total of more than 500 actual finance job interview questions. There is also a recently revised section on interview technique based on Dr. Crack's experiences interviewing candidates and also based on feedback from interviewers worldwide. The quant questions cover pure quant/logic, financial economics, derivatives, and statistics. They come from all types of interviews (corporate finance, sales and trading, quant research, etc.), and from all levels of interviews (undergraduate, MS, MBA, PhD). The first seven editions of Heard on the Street contained an appendix on option pricing. That appendix was carved out as a standalone book many years ago and it is now available in its revised fourth edition: "Basic Black-Scholes'' (ISBN: 978-0-9941386-8-2). Dr. Crack did PhD coursework at MIT and Harvard, and graduated with a PhD from MIT. He has won many teaching awards, and has publications in the top academic, practitioner, and teaching journals in finance. He has degrees/diplomas in Mathematics/Statistics, Finance, Financial Economics and Accounting/Finance. Dr. Crack taught at the university level for over 25 years including four years as a front line

teaching assistant for MBA students at MIT, and four vears teaching undergraduates, MBAs, and PhDs at Indiana University. He has worked as an independent consultant to the New York Stock Exchange and to a foreign government body investigating wrong doing in the financial markets. His most recent practitioner job was as the head of a quantitative active equity research team at what was the world's largest institutional money manager. In 1994 and 1998 F. Delbaen and W. Schachermayer published two breakthrough papers where they proved continuous-time versions of the Fundamental Theorem of Asset Pricing. This is one of the most remarkable achievements in modern Mathematical Finance which led to intensive investigations in many applications of the arbitrage theory on a mathematically rigorous basis of stochastic calculus. Mathematical Basis for Finance: **Stochastic Calculus for Finance provides detailed** knowledge of all necessary attributes in stochastic calculus that are required for applications of the theory of stochastic integration in Mathematical Finance, in particular, the arbitrage theory. The exposition follows the traditions of the Strasbourg school. This book covers the general theory of stochastic processes, local martingales and processes of bounded variation, the theory of stochastic integration, definition and properties of the stochastic exponential; a part of the theory of Lévy processes. Finally, the reader gets acquainted with some facts concerning stochastic differential equations. Contains the most popular applications of the theory of stochastic integration Details necessary facts from probability and analysis which are not included in many

standard university courses such as theorems on monotone classes and uniform integrability Written by experts in the field of modern mathematical finance

Now a vital part of modern economies, the rapid growth of the finance industry in recent decades is largely due to the development of mathematical methods such as the theory of arbitrage. Asset valuation, credit trading, and fund management, now depend on these mathematical tools. Mark Davis explains the theories and their applications.

An Introduction to Derivative Pricing

A Course in Financial Calculus

Facts, Models, Theory

Martingale Methods in Financial Modelling

Heard on the Street: Quantitative Questions from Wall Street Job Interviews (Revised 21st)

Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications

A fully revised and appended edition of this unique volume, which develops together these two important subjects.

This is the second volume in a two-volume sequence on Stochastic calculus models in finance. This second volume, which does not require the first volume as a prerequisite, covers infinite state models and continuous time stochastic calculus. The book is suitable for beginning masters-level students in mathematical finance and financial engineering.

Developed for the professional Master's program in Computational Finance at Carnegie Mellon, the leading financial engineering

program in the U.S. Has been tested in the classroom and revised over a period of several years Exercises conclude every chapter; some of these extend the theory while others are drawn from practical problems in quantitative finance Stochastic Calculus for Finance IIContinuous-Time ModelsSpringer Science & Business Media Informal Introduction To Stochastic Calculus With Applications, An (Second Edition) A Practical Guide To Quantitative Finance Interviews A Very Short Introduction Brownian Motion and Stochastic Calculus Stochastic Differential Equations Stochastic Calculus for Finance I The motivation for the mathematical modeling studied in this text on developments in credit risk research is the bridging of the gap between mathematical theory of credit risk and the financial practice. Mathematical developments are covered thoroughly and give the structural and reduced-form approaches to credit risk modeling. Included is a detailed study of various arbitragefree models of default term structures with several rating grades.

Basic option theory - Numerical methods - Further option theory - Interest rate derivative products.

This compact yet thorough text zeros in on the parts of the theory that are particularly relevant to applications . It begins with a description of Brownian motion and the associated stochastic calculus, including their relationship

to partial differential equations. It solves stochastic differential equations by a variety of methods and studies in detail the one-dimensional case. The book concludes with a treatment of semigroups and generators, applying the theory of Harris chains to diffusions, and presenting a quick course in weak convergence of Markov chains to diffusions. The presentation is unparalleled in its clarity and simplicity. Whether your students are interested in probability, analysis, differential geometry or applications in operations research, physics, finance, or the many other areas to which the subject applies, you'll find that this text brings together the material you need to effectively and efficiently impart the practical background they need. A comprehensive and self-contained treatment of the theory and practice of option pricing. The role of martingale methods in financial modeling is exposed. The emphasis is on using arbitrage-free models already accepted by the market as well as on building the new ones. Standard calls and puts together with numerous examples of exotic options such as barriers and quantos, for example on stocks, indices, currencies and interest rates are analysed. The importance of choosing a convenient numeraire in price calculations is explained. Mathematical and financial language is used so as to bring mathematicians closer to practical problems of finance and presenting to the industry useful maths tools. Stochastic Calculus for Finance

Stochastic Calculus and Financial Applications Brownian Motion Calculus

Outlines and Highlights for Stochastic Calculus Models for Finance II

This book presents a self-contained introduction to stochastic processes with emphasis on their applications in science, engineering, finance, computer science, and operations research. It provides theoretical foundations for modeling time-dependent random phenomena in these areas and illustrates their application by analyzing numerous practical examples. The treatment assumes few prerequisites, requiring only the standard mathematical maturity acquired by undergraduate applied science students. It includes an introductory chapter that summarizes the basic probability theory needed as background. Numerous exercises reinforce the concepts and techniques discussed and allow readers to assess their grasp of the subject. Solutions to most of the exercises are provided in an appendix. While focused primarily on practical aspects, the presentation includes some important proofs along with more challenging examples and exercises for those more theoretically inclined. Mastering the contents of this book prepares readers to apply stochastic modeling in their own fields and enables them to work more creatively with software designed for dealing with the data analysis aspects of stochastic processes.

Most branches of science involving random fluctuations can be approached by Stochastic Calculus. These include, but are not limited to, signal processing, noise filtering, stochastic control, optimal stopping, electrical Page 23/28

circuits, financial markets, molecular chemistry, population dynamics, etc. All these applications assume a strong mathematical background, which in general takes a long time to develop. Stochastic Calculus is not an easy to grasp theory, and in general, requires acquaintance with the probability, analysis and measure theory. The goal of this book is to present Stochastic Calculus at an introductory level and not at its maximum mathematical detail. The author's goal was to capture as much as possible the spirit of elementary deterministic Calculus, at which students have been already exposed. This assumes a presentation that mimics similar properties of deterministic Calculus, which facilitates understanding of more complicated topics of Stochastic Calculus. The second edition contains several new features that improved the first edition both qualitatively and quantitatively. First, two more chapters have been added, Chapter 12 and Chapter 13, dealing with applications of stochastic processes in Electrochemistry and global optimization methods. This edition contains also a final chapter material containing fully solved review problems and provides solutions, or at least valuable hints, to all proposed problems. The present edition contains a total of about 250 exercises. This edition has also improved presentation from the first edition in several chapters, including new material. The rewards and dangers of speculating in the modern financial markets have come to the fore in recent times with the collapse of banks and bankruptcies of public corporations as a direct result of ill-judged investment. At the same time, individuals are paid huge sums to use

their mathematical skills to make well-judged investment decisions. Here now is the first rigorous and accessible account of the mathematics behind the pricing, construction and hedging of derivative securities. Key concepts such as martingales, change of measure, and the Heath-Jarrow-Morton model are described with mathematical precision in a style tailored for market practitioners. Starting from discrete-time hedging on binary trees, continuous-time stock models (including Black-Scholes) are developed. Practicalities are stressed, including examples from stock, currency and interest rate markets, all accompanied by graphical illustrations with realistic data. A full glossary of probabilistic and financial terms is provided. This unique book will be an essential purchase for market practitioners, quantitative analysts, and derivatives traders.

Malliavin Calculus in Finance: Theory and Practice aims to introduce the study of stochastic volatility (SV) models via Malliavin Calculus. Malliavin calculus has had a profound impact on stochastic analysis. Originally motivated by the study of the existence of smooth densities of certain random variables, it has proved to be a useful tool in many other problems. In particular, it has found applications in quantitative finance, as in the computation of hedging strategies or the efficient estimation of the Greeks. The objective of this book is to offer a bridge between theory and practice. It shows that Malliavin calculus is an easy-to-apply tool that allows us to recover, unify, and generalize several previous results in the literature on stochastic volatility modeling related

to the vanilla, the forward, and the VIX implied volatility surfaces. It can be applied to local, stochastic, and also to rough volatilities (driven by a fractional Brownian motion) leading to simple and explicit results. Features Intermediate-advanced level text on quantitative finance, oriented to practitioners with a basic background in stochastic analysis, which could also be useful for researchers and students in quantitative finance Includes examples on concrete models such as the Heston, the SABR and rough volatilities, as well as several numerical experiments and the corresponding Python scripts Covers applications on vanillas, forward start options, and options on the VIX. The book also has a Github repository with the Python library corresponding to the numerical examples in the text. The library has been implemented so that the users can re-use the numerical code for building their examples. The repository can be accessed here: https://bit.ly/2KNex2Y.

Essentials of Stochastic Finance

An Introduction to Continuous-Time Stochastic Processes

Stochastic Methods in Asset Pricing

Arbitrage Theory in Continuous Time

Stochastic Processes in Science, Engineering and Finance

This book provides a comprehensive introduction to the theory of stochastic calculus and some of its applications. is the only textbook on the subject to include more than two hundred exercises with complete solutions. After explaining the basic elements of probability, the author introduces more advanced topics such as Brownian

motion, martingales and Markov processes. The core of the book covers stochastic calculus, including stochastic differential equations, the relationship to partial differential equations, numerical methods and simulation, as well as applications of stochastic processes to finance. The final chapter provides detailed solutions to all exercises, in some cases presenting various solution techniques together with a discussion of advantages and drawbacks of the methods used. Stochastic Calculus will b particularly useful to advanced undergraduate and graduate students wishing to acquire a solid understanding of the subject through the theory and exercises. Including full mathematical statements and rigorous proofs, this book is completely self-contained and suitable for lecture courses as well as self-study.

Introduces key results essential for financial practitioners by means of concrete examples and a fully rigorous exposition.

"A wonderful display of the use of mathematical probability to derive a large set of results from a small set of assumptions. In summary, this is a well-written text that treats the key classical models of finance through an applied probability approach....It should serve as an excellent introduction for anyone studying the mathematics of the classical theory of finance." --SIAM Taking continuous-time stochastic processes allowing for jumps as its starting and focal point, this book provides an accessible introduction to the stochastic calculus and control of semimartingales and explains the basic concepts of Mathematical Finance such as arbitrage theory, hedging, valuation principles, portfolio choice, and term

Page 27/28

structure modelling. It bridges thegap between introductory texts and the advanced literature in the field. Most textbooks on the subject are limited to diffusion-typ models which cannot easily account for sudden price movements. Such abrupt changes, however, can often be observed in real markets. At the same time, purely discontinuous processes lead to a much wider variety of flexible and tractable models. This explains why processes with jumps have become an established tool in the statisti and mathematics of finance. Graduate students, researchers as well as practitioners will benefit from this monograph.